DESIGN OF SOLAR PANEL MONITORING MECHATRON MODULE
Keywords:
Photovoltaic panel; remote solar plant; automatic cleaning; status monitoring; Internet of Things; solar panels dirt; detection of dirt; accumulation and removal of dirt; device management; real-time monitoring and cleaning.Abstract
The development of solar panel power generation control technology has proven to be crucial to increase reliability and reduce costs. As a renewable energy source, solar panels do not emit any pollution while producing electricity. However, solar panels are negatively affected by pollution, which is a major environmental factor affecting energy production. The intensity of the light falling on the solar panel is reduced when dirt accumulates on the surface. This, in turn, reduces the output of electricity produced by the solar panel. Since solar panel cleaning is important, constant monitoring and evaluation of these processes is necessary to optimize them. This highlights the importance of using smart systems to de-dirt and clean solar panels to improve their performance [1]. The article attempts to verify the existence and level of research interest in this topic and evaluates the impact of intelligent systems for detecting pollution conditions and cleaning solar panels in comparison with autonomous and manual technologies.
References
Alijon o‘g‘li, E. O., & Sodiq o'g'li, M. U. (2024). Uarm robots in python data base formation electrical principle and structure scheme design. European Journal of Emerging Technology and Discoveries, 2(2), 43-47. URL:https://humoscience.com/index.php/itse/article/view/42
Alijon o‘g‘li, E. O. (2023). Robototexnik tizmlarning tashqi ob’ektlarga ta’sir ko’rsatishida gidroyuritmalardan foydalanish usullari. Mexatronika va robototexnika: muammolar va rivojlantirish istiqbollari, 1(1), 102-104. URL:https://humoscience.com/index.php/itse/article/view/43
Ergаshev, О. А. О. G. L. (2022). Rоbоtоtexnik tizimlаrning tаshqi оbyektlаrgа tа’sir kо’rsаtishidа suyuqlik оqimlаridаn fоydаlаnish usullаrini tаdqiq etish. Science and Education, 3(6), 399-402. URL:https://humoscience.com/index.php/itse/article/view/44
Xolmatov Oybek Olim o‘g‘li, & Xoliqov Izzatulla Abdumalik o‘g‘li. (2023). Quyosh paneli yuzasini tozalovchi mobile roboti taxlili. Innovations in Technology and Science Education, 2(7), 791–800. URL:https://humoscience.com/index.php/itse/article/view/424
Xolmatov Oybek Olim o‘g‘li, & Vorisov Raxmatulloh Zafarjon o‘g‘li. (2023). Kalava ipi ishlab chiqarishda paxtani sifatini nazorat qilish muammolarining taxlili. Innovations in Technology and Science Education, 2(7), 801–810. URL: https://humoscience.com/index.php/itse/article/view/425
Холматов Ойбек Олим угли, & Иминов Холмуродбек Элмуродбек угли. (2023). Экстракция хлопкового масла с использованием технологии субкритической воды.экстракция хлопкового масла с использованием технологии субкритической воды. Innovations in Technology and Science Education, 2(7), 852–860. URL: https://humoscience.com/index.php/itse/article/view/432
Холматов Ойбек Олим угли, & Хасанов Жамолиддин Фазлитдин угли. (2023). Автоматическая система очистки солнечных панелей на базе arduino для удаления пыли. Innovations in Technology and Science Education, 2(7), 861–871. URL: https://humoscience.com/index.php/itse/article/view/433
Xolmatov Oybek Olim o‘g‘li, & Jo`rayev Zoxidjon Azimjon o‘g‘li. (2023). Machine learning yordamida idishni sathini aniqlash. Innovations in Technology and Science Education, 2(7), 1163–1170. URL: https://humoscience.com/index.php/itse/article/view/477
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.