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Abstract 

This paper presents an analysis of the convergence behavior of infinite series within the scope 

of mathematical analysis. Through the examination of four distinct examples, the study 

illustrates the application of various convergence tests, including the comparison test, ratio test, 

alternating series test, and absolute convergence criteria. The aim is to deepen the 

understanding of when and why a series converges absolutely, conditionally, or diverges. This 

work serves as both a practical guide and a conceptual reinforcement of series convergence for 

students and educators in higher mathematics. 
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Introduction 

The theory of infinite numerical series is one of the key branches of mathematical analysis and 

plays an important role in both theoretical and applied fields. Determining the convergence of 

a series is essential not only in pure mathematics but also in various applications such as 

physics, engineering, economics, and computer science. Each series requires a specific type of 

analysis, and selecting the appropriate convergence test is critical for accurate evaluation. 

This paper focuses on examining the convergence of numerical series using different tests, with 

an emphasis on distinguishing between absolute and conditional convergence. By analyzing 

four practical examples, the paper aims to demonstrate the application of these tests and to 

provide readers with a deeper understanding of the concept. 

Problem 1.  Determine for which values  of   the  series 
1

n

n

a


=

   converges. 

We  are  given: 

                                   ( ) 2 1
1 ln

2 1
n

n
a n n

n

 +
= + − 

−
 

Solution: 

Let’s  simplify   ( )1 :n n+ −  
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As  n→ , we can  approximate  

                                               1 2n n n+ +  . 

So,   
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Let’s simplify   
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For small x, we know  that    ln(1 )x x+  . Here, as 
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Therefore, 
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Now, substitute  these  approximations back into  the expression  for :na  
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Let  
1
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.nb
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
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=  

According  to the limit comparison, if  lim n

n

a

b
  is a finite  positive  number, then na  

converges if and only if nb  converges. 

We know  that the p− series 
1

1
p

n n



=

  converges  if and only if  1p  . 

In  our case, 1
2

p


= + . 

For  the series na  to converge, we  must have 1 1
2


+  . 

This implies 0,
2


  which means 0  . 

The series 
1

n

n

a


=

  converges for 0  . 

Problem 2.   
1

cos

n

n

n



=

  

 Determine the values  of   for which the  series is: 
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a) Absolutely convergent.  

b)  Conditionally convergent. 

Solution: First, we determine for which values of   the given series converges. 

If we define     
1

na
n

=   and cosnb n=  

1)When  0, na     and   
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lim lim 0,n
n n
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= =  
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B b
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| |
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sin
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nB  .According  to  Dirixlet’s  test,  the series  
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n n
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n
a b

n

 

= =

=    converges when 0  . When 0,  this series diviges because the 

necessary condition for convergence is not met when 0  . 

Now we examine the absolute convergence of the series.  
cos 1

| |
n

n n 
  and from the 

convergence of the generalized harmonic series 
1
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n n



=

  for 1  , we obtain the convergence 

of the series  
1
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n

n

n
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=

  for  1  . 

Now we showed that when 0 1  , the given series is not absolutely convergent,                  

the series 
1̀
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n
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

=

  diverges. 

From the inequality  
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+
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and the fact that the series 
1

cos 2

2n

n

n



=

   converges by Dirichlet’s test, and that the series 0x  

diverges, we deduce, by the comparison test, that the series { }n
n

x  also diverges, and the series 

( )nS x  diverges. 

Thus,  the series 
1

cos

n

n

n



=

  

a) Is absolutely  convergent when 1   

b) Is conditionally convergent when 0 1  .  

Problem 3. Let 0{ }n na 

=  numerical sequence defined  by 
00 a    and 

               ( )
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0
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n k

k
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=
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Prove that the numerical sequence ( ){ ln }na n    is convergent  and find its limit. 
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Solution:  

By the recurrence relation  
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Which implies that for 
00 a   , and note that ( )arctg x x  
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that  is sequence ( )n na  is positive and decreasing and therefore it has a limit  l  which   

satisfies  ( 1) sin( ).n l nl l+ = + Thus, it follows that 0l = . Moreover, by Taylor  approximation, 
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Finally, by the Stolz-Cesaro Theorem, 
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Since, ( )ln 0na n  , we may conclude that ( )
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Problem 4.  Compute  the sum   
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Solution: 

Consider  ( ) ( ) ( ) ( )
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Notice that  

                

( ) ( ) ( )( ) ( ) ( )( )

( )( )
0

2 sin cos sin cos sin

cos sin

n nin in

n n
n kk n k n k

k
k

i n e e i i

i i

     

 

−

−− −

=

= − = + − − =

 
− − 

 


 

            ( )
( ) ( ) ( )

2 2

0 0

cos sin 2 sin cot sin
2

i n k i n kn n n
n k n k n k

k
k

k k

n k
e e i

  
   

− −

−

= =

  −  
− =          

   

Hence  

           ( ) ( ) ( ) ( )
( )2 1 2 11

2 2 12

0

2 1
1 sin arctan cot arctan sin

2

n nn
n k

n
k

k

n k
P x x x x

+ ++
+

=

+ −  
= +    

   
  



European Journal of Pedagogical Initiatives and Educational Practices 
ISSN (E): 2938-3625 

Volume 3, Issue 6, June - 2025 

36 | P a g e  

 

 

              
( )2 1 2 1

2 1

0

2 11
sin

2

n n
n

kk
k

n k
x

x

+ +
+

=

+ −  
=   

   
  

                 ( ) ( )
2 1 2 1

12 1 2 1

2 2
1 1 ... .

n n
n nn n

n
x x x

+ +
−+ −   

= − + − + +   
   

 

Denote  
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