European Science Methodical Journal ISSN (E): 2938-3641 Volume 2, Issue 3, March- 2024

DETERMINING THE FUTURE TRENDS OF HIV PREVALENCE AMONG INDIVIDUALS AGED 15-49 YEARS FOR ZAMBIA USING HOLT'S LINEAR METHOD

Dr. Smartson. P. NYONI1, Thabani NYONI2 1ZICHIRe Project, University of Zimbabwe, Harare, Zimbabwe 2Independent Researcher & Health Economist, Harare, Zimbabwe

Abstract:

This study uses annual time series data of HIV prevalence among individuals aged 15-49 years for Zambia from 1990 to 2020 to predict future trends of HIV prevalence over the period 2021 to 2030. The study utilizes Holt's linear exponential smoothing model. The optimal values of smoothing constants α and β are 0.9 and 0.1 respectively based on minimum MSE. The results of the study indicate that annual HIV prevalence among individuals aged 15-49 years will continue to decline over the out of sample period but still remain high. Therefore, there is need for a rapid scale up of HIV testing services in the community, strengthening HIV prevention among this age group and improving ART adherence among people living with HIV.

Keyword(s): - Exponential smoothing, Forecasting, HIV prevalence

Background

According to WHO, in 2019 there were approximately 38 million people living with HIV reported worldwide. The majority of people living with HIV reside in low and middle-income countries, with around 66% living in sub-Saharan Africa. Among this group 19.6 million are living in East and Southern Africa. The Zambia statistical Agency revealed that Zambia witnessed a decline in the prevalence of HIV from 13.3% in 2014 to 11.6% in 2016. Furthermore, the report indicated an antiretroviral therapy coverage which stood at 72% reflecting an urgent need to scale up ART services among the population. UNAIDS reported that in 2018 approximately 1.2 million people in Zambia were living with HIV and there 17,000 HIV related deaths. In addition, 78% of all people living with HIV were on treatment. As of 2019, 87% of people living with HIV were aware of their status, and 89% on treatment and 75% were virally suppressed. The UNAIDS reported also highlighted that AIDS related mortality dropped from 26,000 in 2010 deaths to 17,000 deaths in 2018. There was an impressive decrease in the number of new HIV infections from 56,000 to 48,000 over the same period. In Zambia, in 2018 there were approximately 62,000 children living with HIV, 79% of them were on ART and there were 3,000 AIDS related annual deaths. The rapid scale up of antiretroviral therapy services and prompt initiation of pediatric ART in Zambia increased gradually from 24,000 in 2010 to 49,116 in 2018. This resulted in reduction in HIV-related

European Science Methodical Journal

ISSN (E): 2938-3641

Volume 2, Issue 3, March- 2024

mortality from 3,600 in 2016 to 3,000 in 2018 (UNAIDS, 2018; AVERT, 2017). Approximately 6.6% of young people are living with HIV and prevalence is higher among young women (8%) than men (5%). Annual HIV incidence among people aged 15–24years is 57 new infections per 10,000 uninfected persons per year (Nakazwe et al. 2019). Monitoring HIV prevalence and associated risk factors in Zambia is based on a comprehensive ANC-based surveillance system, population-based surveys in selected communities, and nationally representative population-based surveys. ANC-based data covering the period of 1994–2011 showed declining overall prevalence trends among young women; however, these trend patterns differed significantly according to place and educational attainment (Kayeyi et al. 2012; Fylkesnes et al. 2001). The objective of this study is to model and forecast HIV prevalence among individuals aged 15-49 years for Zambia using Holt's double exponential smoothing technique. The findings of this study are envisaged to inform policy, planning and allocation of resources towards targeted HIV programs with particular focus being given to key populations.

Literature Review

Author (s)	Objective (s)	Methodology	Key finding (s)
Moyo et al. (2021)	To determine an ARIMA model and advance counterfactual forecasting at a point of policy intervention.	Applied ARIMA model	The model predicts a reduction from an average of 3500 to 3177 representing 14.29% in HIV/AIDS cases from 2017 (year of policy activation) to 2019, but the actual recorded cases dropped from 3500 to 1514 accounting for 57.4% in the same time frame
Munthali et al. (2020)	To assess survival experiences and the factors associated with survival in CLHIV on ART in Zambia	-conducted a retrospective cohort analysis of CLHIV (aged up to 15 years) using routinely collected data from health facilities across Zambia, over 13 years to ascertain mortality rates -applied Cox regression model	Children with HIV in Zambia are surviving much longer than was predicted before ART was introduced 14 years ago
Nakazwe et al. (2019)	To examine geographical and sub-population differences in HIV prevalence trends among young people aged 15– 24years in Zambia.	-The study analyzed data from Zambia Demographic and Health Surveys (ZDHSs) that were conducted in 2001– 2, 2007, and 2013–14 - Log binomial regression analysis of generalized linear models was used to test for trends.	The increase in HIV prevalence among urban young men over the past 12years, contrasting declining trends among young women in both urban and rural populations, suggests differential effects of prevention efforts
Mutale et al. (2019)	To report the research capacity building activities in SSA	reviewed program data and conducted interviews with program leaders and	Despite some challenges, UVP has achieved positive outcomes over

European Science Methodical Journal ISSN (E): 2938-3641

Volur	ne 2	Тсспе	3	March-	2024
v ului	IIC 4.	13300	J.		

	conducted by the	participants to	its first four years.
	University of Zambia	understand and document	Longstanding
	(UNZA)-Vanderbilt	the progress and	partnerships and local
	Training Partnership for	outcomes of the	institutional ownership
	HIV Nutrition-Metabolic	partnership	were the main drivers.
	Research (UVP),		Challenges are expected
	drawing lessons and		to be mitigated as the
	challenges for a wide		project continues and
	global health audience		produces more UNZA
			researchers and teams
			and more funded
			projects, collectively
			building the local
			research community
Thomas et al. (2017)	To compare HRQoL	Cross sectional study	ART is successful in
	between HIV-positive		helping to reduce
	and HIV-negative people		inequalities in HRQoL
	in Zambia and South		between HIV-positive
	Africa.		and HIV-negative
			individuals in this general
			population sample
Chanda-Kapata et al.	To estimate the adult	A cross sectional	HIV prevalence was
(2016)	prevalence of HIV	population based survey	lower than previously
	among the adult	to asses HIV status	estimated in the country.
	population in Zambia and	among participants aged	The burden of HIV
	determine whether	15 years and above in a	showed soci-
	demographic	national tuberculosis	odemographic disparities
	characteristics were	prevalence survey	signifying a need to target
	associated with being		key populations or
	HIV positive.		epidemic drivers.

Methodology

This study utilizes an exponential smoothing technique to model and forecast future trends of HIV prevalence among individuals aged 15-49 years in Zambia. In exponential smoothing forecasts are generated from the smoothed original series with the most recent historical values having more influence than those in the more distant past as more recent values are allocated more weights than those in the distant past. This study uses the Holt's linear method (Double exponential smoothing) because it is an appropriate technique for modeling linear data. Holt's linear method is specified as follows:

Model equation

 $\begin{aligned} &Z_t = \mu_t + \rho_t t + \varepsilon_t \\ &\text{Smoothing equation} \\ &S_t = \alpha Z_t + (1 - \alpha) (S_{t-1} + b_{t-1}) \\ &0 < \alpha < 1 \\ &\text{Trend estimation equation} \\ &b_t = \beta (S_t - S_{t-1}) + (1 - \beta) b_{t-1} \\ &0 < \beta < 1 \\ &\text{Forecasting equation} \\ &f_{t+h} = S_t + hb_t \\ &Z_t \text{ is the actual value of HIV prevalence at time t} \\ &\varepsilon_t \text{ is the time varying error term} \end{aligned}$

European Science Methodical Journal

ISSN (E): 2938-3641 Volume 2, Issue 3, March- 2024

 μ_t is the time varying mean (level) term

- ρ_t is the time varying **slope term**
- **t** is the trend component of the time series
- St is the exponentially smoothed value of HIV prevalence at time t
- α is the exponential smoothing constant for the data
- β is the smoothing constant for trend
- f_{t+h} is the h step ahead forecast
- b_t is the trend estimate (slope of the trend) at time t

 b_{t-1} is the trend estimate at time t-1

Data Issues

This study is based on annual HIV prevalence among individuals aged 15-49 years in Zambia for the period 1990 - 2020. The out-of-sample forecast covers the period 2021 - 2030. All the data employed in this research paper was gathered from the World Bank online database.

Findings of the study

Exponential smoothing Model Summary

Table 1: ES model summary		
Variable	Z	
Included Observations	31	
Smoothing constants		
Alpha (α) for data	0.900	
Beta (β) for trend	0.100	
Forecast performance measures		
Mean Absolute Error (MAE)	0.446914	
Sum Square Error (SSE)	27.387464	
Mean Square Error (MSE)	0.883467	
Mean Percentage Error (MPE)	-0.612137	
Mean Absolute Percentage Error (MAPE)	4.299349	

Residual Analysis for the Applied Model

European Science Methodical Journal

ISSN (E): 2938-3641 Volume 2, Issue 3, March- 2024

Figure 2: In-sample forecast for the A series

Figure 3: Actual and smoothed graph for A series

Out-of-Sample Forecast for A: Actual and Forecasted Graph

European Science Methodical Journal ISSN (E): 2938-3641 Volume 2, Issue 3, March- 2024

Out-of-Sample Forecast for A. Forecasts only			
Table 2: Tabulated out-of-sample forecasts			
Year	Forecasted HIV prevalence		
2021	11.0190		
2022	10.9259		
2023	10.8329		
2024	10.7399		
2025	10.6468		
2026	10.5538		
2027	10.4607		
2028	10.3677		
2029	10.2747		
2030	10.1816		

Out of Comple Forecast for A. Forecasts only

The main results of the study are shown in table 1. It is clear that the model is stable as confirmed by evaluation criterion as well as the residual plot of the model shown in figure 1. It is projected that annual HIV prevalence among individuals aged 15-49 years will continue to decline over the out of sample period.

Policy implication and conclusion

Our research findings indicate that annual HIV prevalence among individuals aged 15-49 years will continue to decline in the out of sample period but still remain high. Therefore, this paper calls for a rapid scale up of HIV testing services in the community, strengthening HIV prevention among this age group and improving ART adherence among people living with HIV.

References

- [1] World Health Organization (2020) World HIV/AIDS Report. Geneva, Switzerland. https://www.who.int/news-room/fact-sheets/detail/hiv-aids
- [2] Zambia Statistical Agency (2016) Zambia Population HIV Impact Assessment (Zam- phia) Survey. https://www.zamstats.gov.zm/
- [3] Unaids and Joint United Nations Programme on HIV/AIDS (2010) Getting to Zero: 2011-2015 Strategy. World Health Organization.
- [4] UNAIDS (2018). Country Fact sheet, Zambia 2018. Available online at: https:// www.unaids.org/en/regionscountries/countries/zambia (accessed March 19, 2020).
- [5] Avert. HIV and AIDS in Zambia AVERT. (2017). Available Online at https:// www.avert.org/professionals/hiv-around-world/sub-saharan-africa/zambia
- [6] Fylkesnes K, Musonda RM, Sichone M, Ndhlovu Z, Tembo F & Monze M (2001). Declining HIV prevalence and risk behaviours in Zambia: evidence from surveillance and population-based surveys. Aids. 15(7):907-16.1
- [7] Kayeyi N, Fylkesnes K, Michelo C, Makasa M & Sandoy I (2012). Decline in HIV prevalence among young women in Zambia: national-level estimates of trends mask geographical and socio-demographic differences. PLoS One. 7(4):e33652.

