European Science Methodical Journal ISSN (E): 2938-3641 Volume 2, Issue 6, June- 2024

ESTIMATING FUTURE TRENDS OF HIV PREVALENCE AMONG INDIVIDUALS AGED 15-49 YEARS IN TANZANIA USING HOLT'S LINEAR METHOD

Dr. Smartson. P. NYONI1, Thabani NYONI2 1ZICHIRe Project, University of Zimbabwe, Harare, Zimbabwe 2Independent Researcher & Health Economist, Harare, Zimbabwe

Abstract:

This study uses annual time series data of HIV prevalence among individuals aged 15-49 years for Tanzania from 1990 to 2020 to predict future trends of HIV prevalence over the period 2021 to 2030. The study utilizes Holt's linear exponential smoothing model. The optimal values of smoothing constants α and β are 0.9 and 0.1 respectively based on minimum MSE. The results of the study indicate that annual HIV prevalence among individuals aged 15-49 years will continue to decline over the out of sample period. Therefore, there is need to continuously support HIV case detection, prevention and treatment especially among high-risk groups.

Keyword (s): - Exponential smoothing, Forecasting, HIV prevalence

Introduction

According to the General Bureau of Statistics, Suriname is located in the northern part of South America and has an estimated population size of 567.300 inhabitants from different ethnic backgrounds. The three most prominent ethnic groups are Africans (38%), Indian (27%), and Javanese descent (14%) (Stijnberg *et al.* 2022). The country is made up of ten administrative districts, of which two are urban, six are rural, and two are interior areas. The two urban districts, including the capital Paramaribo, cover only 0.5% of the land surface but contain 70% of the total population (PAHO, 2017). UNAIDS data revealed that approximately 5200 people were living with HIV in 2020 with an estimated HIV sero-prevalence in the general population of 1.1%. In Suriname, HIV remains one of the leading causes of mortality (PAHO, 2017) with a mortality rate of 14.9 per 100000 in 2017 (Stijnberg *et al.* 2019). The National HIV response focuses on HIV testing, ART initiation for all HIV positive individuals, and implementation of the combination HIV prevention strategy (Suriname Ministry of Health, 2014). The purpose of this study is to model and forecast HIV prevalence among the 15-49 year age group using Holt's linear method. The study findings are expected to inform policy, planning and allocation of resources to HIV programs targeting young adults.

European Science Methodical Journal ISSN (E): 2938-3641

Volume 2, Issue 6, June- 2024

Literature review			
Author (s)	Objective (s)	Methodology	Key finding (s)
Stijnberg et al. (2023)	To evaluate the cascade of care for the elimination of mother-to-child- transmission of human immunodeficiency virus (HIV) in Suriname and identify sociodemographic and clinical factors preventing transmission to exposed infants	A mixed-methods study design was used. Antenatal care data from the 2018 cross-sectional multi- indicator cluster survey on 1 026 women aged 15–49 years who had had a live birth in the previous 2 years were used.	Of the pregnant women with HIV, 84.2% received antiretroviral therapy, while 95.5% of their infants received HIV prophylactic treatment. Receiving antiretroviral therapy for the mother (odds ratio (OR) 45.4, 95% confidence interval (CI) 9.6–215.3) and the child (OR 145.7, 95% CI 14.4– 1477.4) significantly increased the odds of a negative HIV test result in infants. Conversely, living in the interior decreased the odds (OR 0.2, 95% CI 0.4–0.7) compared with urban living
Karagodina et al. (2023)	To examine the barriers and facilitators of HIV detection, initiation of treatment, and adherence to antiretroviral therapy (ART) among WWID	-in-depth interviews	The ongoing war against Ukraine continues to have a detrimental impact on all aspects of the population's life, particularly affecting WWID
Stijnberg et al. (2022)	To identify sociodemographic and clinical factors influencing HIV diagnosis, linkage to care, antiretroviral therapy (ART) initiation and retention, and viral suppression in Suriname	Applied multiple regression looking into sociodemographic and clinical factors was executed. Indicators evaluated were 'knowing HIV status', people initiating ART, 1-year ART retention, and viral suppression with ART.	Men initiate treatment at a more advanced stage of disease (CD4 \leq 200) than women (47.4% versus 31.4%), leading to higher mortality rates. People from the interior were less likely linked to care (aOR, 0.6; 95% CI, 0.4– 0.8) than those from urban regions but did not display significant differences in treatment initiation.
Rozanova et al. (2021)	To examine HIV diagnoses in older people living with HIV (OPWH) in Ukraine, a country emblematic of the EECA region	Analyzed incident HIV diagnoses from 2015– 2018 and mortality trends from 2016–2018 for three age groups: 1) 15–24 years; 2) 25–49 years; and 3)50 years. AIDS was defined as CD4<200cells/mL	Newly diagnosed OPWH had the same-year mortality ranging from 3 to 8 times higher than age-matched groups in the Ukrainian general population
Bello et al. (2018)	To reconstruct the spatiotemporal pattern of	Major Guianese/Surinamese	Results showed that the HIV subtype B epidemic

European Science Methodical Journal ISSN (E): 2938-3641 Volume 2, Issue 6, June- 2024

	voluine	2, 155ue 0, Julie- 2024
spread of	BPANDEMIC and	in French Guiana and
"BPANDEMIC" lineage	BCAR lineages were	Suriname has been driven
and of non-pandemic	identified by Maximum	by multiple active BCAR
subtype B viral lineages	Likelihood phylogenetic	and BPANDEMIC
circulating in French	analysis and the	transmission chains that
Guiana and Suriname	spatiotemporal and	arose since the middle
	demographic parameters	1970s onward and
	estimated using a	operate in both countries
	Bayesian coalescent-	simultaneously.
	based method	Although no significant
		differences in the
		epidemic potential of
		major BCAR and
		BPANDEMIC lineages
		were observed, relevant
		associations between the
		infecting subtype B
		lineage and
		epidemiological and
		clinical characteristics
		were detected in French
		Guiana

Methodology

This study utilizes an exponential smoothing technique to model and forecast future trends of HIV prevalence among individuals aged 15-49 years in Suriname. In exponential smoothing forecasts are generated from the smoothed original series with the most recent historical values having more influence than those in the more distant past as more recent values are allocated more weights than those in the distant past. This study uses the Holt's linear method (Double exponential smoothing) because it is an appropriate technique for modeling linear data.

Holt's linear method is specified as follows:

Model equation $A_t = \mu_t + \rho_t \mathbf{t} + \varepsilon_t$ Smoothing equation $S_t = \alpha A_t + (1 - \alpha) (S_{t-1} + b_{t-1})$ $0 < \alpha < 1$ Trend estimation equation $b_t = \beta (S_t - S_{t-1}) + (1 - \beta)b_{t-1}$ $0 < \beta < 1$ Forecasting equation $f_{t+h} = S_t + hb_t$ A_t is the actual value of HIV prevalence at time t ε_t is the time varying error term μ_t is the time varying mean (level) term ρ_t is the time varying slope term t is the trend component of the time series S_t is the exponentially smoothed value of HIV prevalence at time t α is the exponential smoothing constant for the data β is the smoothing constant for trend

ISSN (E): 2938-3641 Volume 2, Issue 6, June- 2024

 f_{t+h} is the h step ahead forecast

 b_t is the trend estimate (slope of the trend) at time t

 b_{t-1} is the trend estimate at time t-1

Data Issues

This study is based on annual HIV prevalence among individuals aged 15-49 years in Suriname for the period 1990 - 2020. The out-of-sample forecast covers the period 2021 - 2030. All the data employed in this research paper was gathered from the World Bank online database.

Study findings

Exponential smoothing Model Summary

Table 1: ES model summary			
Variable	A		
Included Observations	31		
Smoothing constants			
Alpha (α) for data	0.900		
Beta (β) for trend	0.300		
Forecast performance measures			
Mean Absolute Error (MAE)	0.055161		
Sum Square Error (SSE)	0.191564		
Mean Square Error (MSE)	0.006179		
Mean Percentage Error (MPE)	-2.045798		
Mean Absolute Percentage Error (MAPE)	11.085707		

Residual Analysis for the Applied Model

Figure 1: Residual analysis

European Science Methodical Journal

ISSN (E): 2938-3641 Volume 2, Issue 6, June- 2024

Figure 2: In-sample forecast for the A series

Figure 3: Actual and smoothed graph for A series

Out-of-Sample Forecast for A: Actual and Forecasted Graph

European Science Methodical Journal ISSN (E): 2938-3641

Volume 2, Issue 6, June- 2024

Out-of-Sample Forecast for A: Forecasts only				
Table 2: Tabulated out-of-sample forecasts				
Year	Forecasted HIV prevalence			
2021	1.0657			
2022	1.0346			
2023	1.0035			
2024	0.9723			
2025	0.9412			
2026	0.9101			
2027	0.8790			
2028	0.8479			
2029	0.8167			
2030	0.7856			

The main results of the study are shown in table 1. It is clear that the model is stable as confirmed by evaluation criterion as well as the residual plot of the model shown in figure 1. It is projected that annual HIV prevalence among individuals aged 15-49 years will continue to decline over the out of sample period.

Policy implication and conclusion

This study establishes that annual HIV prevalence among individuals aged 15-49 years will continue to decline over the out of sample period. Therefore, this paper calls for the authorities to continuously support HIV diagnosis, treatment and prevention programs among this age groups with targeting of high risk groups.

References

- General Bureau of Statistics Suriname (ABS). DEMOGRAFISCHE-DATA-2013-2016.pdf.https://spangstaging.com/2019/abs/wpcontent/uploads/2019/02/DEMOGRAFIS CHEDATA-2013-2016.pdf
- [2] Deborah Stijnberg., Mike Mc Kee., Jochen Bergs., Malti R. Adhin., and Ward Schrooten (2022). The continuum of care for people living with HIV in Suriname: identifying factors influencing the care delivery process, IJQHC Communications, 2022, 2(2) 1-11
- [3] Pan American Health Organization (PAHO) (2017). HEALTH IN THE AMERICAS, EDITION SUMMARY: regional outlook and country profiles. Washington: Pan American Health Org.
- [4] Suriname | UNAIDS. Country Factsheets Suriname 2021 HIV and AIDS Estimates. https://www.unaids.org/en/regionscountries/ countries/suriname (31 October 2021, date last accessed
- [5] Ministry of Health Suriname. National Strategic Plan for a multisectoral approach of HIV in Suriname 2014–2020. Ministry of Health Suriname, 2014.
- [6] Stijnberg D, Mc Kee M, & Adhin M (2019). Development of the HIV Patient Master Index: a basis for monitoring the HIV Continuum of Care and formulating interventions for people living with HIV in Suriname. Trans R Soc Trop Med Hyg. 113:S195–S195

