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Abstract:  

The classical definition of probability is one of the basic concepts in probability theory. This 

article explores the theoretical foundations of the classical definition of probability, its 

formulation and application, as well as its role in modern statistics and probability models. The 

article is intended for students and researchers in the field of mathematics and statistics. 
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Аннотация 

Классическое определение вероятности является одной из основных концепций в 

теории вероятностей. В этой статье исследуются теоретические основы классического 

определения вероятности, его формулировки и применения, а также его роль в 

современной статистике и вероятностных моделях. Статья предназначена для 

студентов и исследователей в области математики и статистики. 
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Introduction 

An individual's level of confidence in the occurrence of a certain event may be quantified 

using the concept of probability. The classical definition of probability is considered to be the 

most important of the many different ways to defining probability that are utilized in the field 

of probability theory. The foundation for the subsequent development of probability theory is 

provided by this definition, which is based on the premise that the probability of all elementary 

possibilities in a limited space of outcomes is all the same.  

Probability according to the traditional definition. In the traditional definition of probability, 

the assumption that all elementary outcomes of a test are equally likely is the foundation upon 

which the concept is built. In the context of this discussion, the probability of an occurrence 

is defined as the ratio of the number of positive outcomes to the total number of events that 

may occur. 
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Formulation of the classical definition 

Let Ω be a finite space of elementary outcomes, and let E be an event that is a subset of Ω. If 

all elementary outcomes are equally probable, then the probability of an event E is denoted 

by P(E) and is defined as: 

P(E) =    
 |E| 

| Ω |
 

where |E| is the number of elementary outcomes that favor the event E, and |Ω| is the total 

number of elementary outcomes in the space Ω. 

 Examples of the classical definition 

- Tossing a coin: Let Ω = {heads, tails}. The probability of heads (event E) is: 

P(E) =    
 |{heads}| 

| {heads,tails} |
 = 

1

2
 

 

- Throwing a die: Let Ω = {1, 2, 3, 4, 5, 6}. The probability of getting an even number (event 

E, including the numbers 2, 4, and 6) is: 

P(E) =    
 |{2,4,6}| 

|  {1,2,3,4,5,6}|
 = 

3

6
 = 

1

2
 

 

Theoretical foundations 

There are a number of fundamental ideas and assumptions that form the foundation of the 

traditional definition of probability. Assuming that all elementary possibilities in the space Ω 

are equally likely is the primary assumption that underpins the classical definition. This not 

only makes the computation of probability easier, but it also makes the notion of probability 

more easily relevant to a variety of real-world issues. 

 

Finite Space Modeling 

While the classical concept is most easily applicable to finite result spaces, it is also the most 

convenient. In situations that occur in the real world and include issues in which the result 

space is either infinite or continuous, the classical concept has to be modified. 

The traditional definition is subject to further restrictions and adjustments. 

The traditional definition of probability, despite the fact that it is straightforward and easy to 

understand, has certain shortcomings. 

Constraints imposed by the application 

In situations in which the space of elementary outcomes is either infinite or continuous, the 

classical concept cannot be used. In situations like this, different methods are utilized, such as 

the statistical definition of probability and the axiomatic probability theory. 

Generalizations and modifications are included. 

Several expansions of the classical definition have been devised for more complicated 

instances. One of these generalizations is the frequentist definition of probability, which 

defines probability as the limit of the relative frequency of occurrence of an event in a large 

number of trials. 
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The axiomatic definition of probability presents probability as a function that satisfies the 

Kolmogorov axioms. This definition makes it possible to deal with a larger range of outcome 

spaces. 

Considerations pertaining to the traditional definition 

The traditional definition of probability is utilized in a variety of scientific and technological 

domains, such as engineering, economics, gaming, and statistics, among others. 

 

 In statistics 

 The classical definition is utilized in the field of statistics for the purpose of the estimation of 

the probability of a variety of occurrences and the development of probability models. In the 

case of assessing data from trials in which all possible outcomes are equally likely, for 

instance, the classical definition is helpful in establishing probabilities and drawing inferences 

about the results. 

 

In gambling 

To determine the player's odds of winning and to compute the probability of winning, the 

traditional definition of gambling is utilized in the gaming industry. In the game of roulette or 

poker, for instance, one may compute the probability of winning by making the assumption 

that all possible outcomes are equally likely to occur. 

The fundamental formulae of combinatorics, including both the theoretical underpinnings and 

operational applications. One of the subfields of mathematics is known as combinatorics, and 

its primary focus is on the ways of counting and organizing items. When it comes to 

addressing issues that involve the enumeration, selection, and arrangement of items, the 

fundamental formulae of combinatorics are essential tools to have at your disposal. In this 

article, the fundamental formulae of combinatorics, as well as their theoretical underpinnings 

and instances of their application in a variety of scientific and technological domains, are 

discussed. In addition to its importance in probability theory, statistics, and algorithmic 

design, combinatorics is also an important part of many other branches of mathematics. Using 

the fundamental concepts of combinatorics, you are able to solve issues in a methodical and 

efficient manner that are associated with the selection, ordering, and placement of items. For 

the purpose of addressing a broad variety of issues in mathematics and its applications, it is 

vital to have a solid understanding of these formulae. 

 

Permutations 

A permutation is an ordered arrangement of all the elements of a set. 

Formula for the number of permutations 

For a set of n distinct elements, the number of all possible permutations of these elements is 

given by the formula: 

P(n) = n! where n! (factorial n) denotes the product of all natural numbers from 1 to n: 

n! = n *(n-1) * …* 2 * 1. 
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Example: 

For a set of 4 elements (A, B, C, D), the number of all possible permutations is 4! = 24. 

Permutations with repetitions 

If some elements of the set are repeated, the formula for the number of unique permutations 

becomes: 

P (n; n1, n2 … nk) = 
n!

 n1!×n2!×…×nk!
 , 

where n is the total number of elements and nk is the number of repetitions of the k-th element. 

Example: 

For a set of 4 letters (A, A, B, B), the number of unique permutations is: 

P (4; 2, 2) = 
4!

2!×2!
 =  

24

4
= 6.  

 

Combinations 

A combination is a selection of elements from a set, regardless of order. 

Formula for the number of combinations 

The number of ways to select k elements from n different elements, regardless of order, is 

determined by the binomial coefficient: 

Ck
n =

n!

 k! × (n − k)!
 

Example: 

For a set of 5 elements, the number of ways to select 2 elements is: 

C2
5 =

5!

 2!×(5−2)!
=

120

2×6
=10 

Combinations with repetitions 

If elements can be repeated, the number of ways to select k elements from n different types, 

taking into account repetitions, is given by: 

Ck
n+k−1 =

(n + k − 1)!

 k! × (n − 1)!
 

 

Example: 

To select 3 balls from 4 types (with repetitions) the number of ways is: 

C3
4+3−1 =

6!

 3!
=20. 

 

Placements 

An arrangement is an ordered selection of k elements from n distinct elements. 

Formula for the number of arrangements 

The number of ways to select and arrange k elements from n distinct elements is given by the 

formula: 

Ak
n =

n!

 (n−k)!
 . 

Example: 
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To select and order 3 elements out of 5, the number of ways is: 

A3
5  =

5!

 (5−3)!
=

120

2
= 60. 

Generalized Formulas and Applications 

Inclusion-Exclusion Formula 

The inclusion-exclusion formula is used to count the number of elements in the union of 

several sets: 

|A1  ∪  A2  ∪ … ∪ Ak| =∑ |Ai| − ∑ |Ai ∩ Aj| + ⋯ + (−1)k+1 |A1 ∩ A2 ∩ … ∩ Ak|1≤i≤j≤k
k
i=1  

Example: 

If there are 20 students in a class, of which 12 are studying mathematics, 8 are studying 

physics, and 5 are studying both, then the number of students studying at least one of the 

subjects is: 

|M ∪  F| = |M| + |F| - |M∩F| = 12 + 8 - 5 = 15. 

Application in algorithms 

Combinatorial formulas are widely used in algorithms such as generating all possible 

combinations or permutations, as well as in optimization and cryptography problems. 

 

Conclusion 

When it comes to addressing a broad variety of issues that involve the counting and organizing 

of items, the fundamental formulae of combinatorics are quite useful to have at your disposal. 

The capacity to comprehend and implement these concepts is of utmost importance in the 

fields of probability theory, statistics, computer science, and several other branches of science 

and engineering. Problems that might normally be insurmountable can be formalized and 

solved with the assistance of these tools. Providing the essential framework for probability 

theory and its application to practical situations, the classical concept of probability is the 

foundation upon which probability theory is built. In spite of the fact that it has several 

shortcomings, this concept continues to be an essential instrument for the mathematical 

modeling and study of random occurrences. 

 

REFERENCES 

1. Diaz, M.J.C., Fernandez-Nieto, E.D., Ferreiro, A.M., 2008. Sediment transport models in 

shallow water equations and numerical approach by high order finite volume methods. 

Comput. & Fluids 37, 299–316.  

2. Dubey, A.K., Kumar, P., Chembolu, V., Dutta, S., Singh, R.P., Rajawat, A.S., 2021. 

Flood modeling of a large transboundary river using WRF-Hydro and microwave remote 

sensing. J. Hydrol. 598, 126391. 

3. Феллер, В. (2012). "Введение в теорию вероятностей и ее применения". Т.1. 

Москва: Наука. 

4. Колмогоров, А. Н. (2009). "Основы теории вероятностей". Москва: Наука. 

5. Глэдстоун, К. М. (2017). "Современная теория вероятностей". Санкт-Петербург: 

Наука. 



 

 

European Science Methodical Journal 
ISSN (E): 2938-3641 

Volume 2, Issue 8, August - 2024 

23 | P a g e  

 

 

6. Raupova, M. H., & Xasanova, M. F. (2024). PERFORMING COMPLEX 

MATHEMATICAL CALCULATIONS IN PYTHON USING THE SYMPY 

LIBRARY. European Journal of Interdisciplinary Research and Development, 25, 73-78. 

7. Raupova, M. H., Xasanova, M. F., & Qurbonqulova, S. B. (2024). PYTHON 

DASTURLASH TILINING SYMPY VA SCIPY KUTUBXONALARIDAN 

FOYDALANGAN HOLDA INTEGRALGA DOIR MASALALARNI HAL 

QILISH. PEDAGOG, 7(2), 523-528. 

8. Раупова, М. Х., & Урманов, Ш. М. (2024). ИЗМЕНЕНИЯ ПЕДАГОГИЧЕСКОГО 

ПРОЦЕССА В СОВРЕМЕННОЙ ШКОЛЕ: ВЫЗОВЫ И 

ПЕРСПЕКТИВЫ. PEDAGOG, 7(2), 515-522. 

9. Raupova, M. H. (2024). USING QUANTUM ALGORITHMS IN 

CRYPTOGRAPHY. Web of Technology: Multidimensional Research Journal, 2(3), 9-

14. 

10. Mukhamedieva, D. T., & Raupova, M. H. (2024). Model of biodiversity and plant 

sustainability based on quantum variational optimization. In E3S Web of 

Conferences (Vol. 498, p. 02007). EDP Sciences. 

11. Mukhamedieva, D. T., & Raupova, M. H. (2024). Model for forest ecosystems based on 

quantum optimization. In E3S Web of Conferences (Vol. 498, p. 02006). EDP Sciences. 

12. Panjiyeva, G., & Raupova, M. (2024). A DEEPER UNDERSTANDING OF THE 

CONCEPT OF A FUNCTION IN A PYTHON PROGRAM. PEDAGOG, 7(4), 514-518. 

13. Jamolov, B., & Raupova, M. (2022). SOME REMARKS ON EQUATIONS OF THE 

HYPERBOLIC TYPE WITH PARTICULAR DERIVATIVES. Science and 

Innovation, 1(6), 301-316. 

 


