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Abstract:  

Decision-making needs to be improved because it is difficult to make decisions for an 

Autonomous Car (AC) that will prevent deadly traffic accidents, provide comfort and safety, 

and reduce traffic.  Artificial Intelligence (AI) has used a variety of methods and approaches to 

address these problems, such as Machine Learning (ML) algorithms in conjunction with Deep 

Learning (DL) techniques.  Because it allows for real-time decision-making, object detection, 

and automation of driving systems, artificial intelligence has emerged as a key component in 

the development of autonomous cars.  This paper creates a policy for autonomous cars decision-

making that uses artificial intelligence to handle overtaking tendencies on highways.  First, a 

highway driving environment must be established in which the ego automobile seeks to safely 

and efficiently navigate through the other cars. The significance of artificial intelligence in 

driverless cars is examined in this study.  The artificial gathers and analyzes data from all of 

the car's sensors.  The car's driving mechanism uses the retrieved data as input.  Therefore, 

artificial intelligence can make choices more quickly in real time by using a perception 

algorithm.  In order to address the overtaking behaviors on highways, we developed a Deep 

Reinforcement Learning (DRL)-powered autonomous car decision-making system in this 

study. This is a novel version of the well-known Support Vector Machine (SVM) technique. 

These cars are controlled using a hierarchical control structure, meaning that the lower level is 

concerned with monitoring the car's speed and acceleration while the upper level controls 

driving decisions.  The thorough computational processes of the SVM-DRL algorithms are 

examined and contrasted. To assess the efficacy of the suggested roadway decision-making 

policy, a number of estimation simulation experiments are carried out.  The suggested 

framework's benefits in terms of control performance and convergence rate are highlighted.  

The findings of the simulation indicate that highway driving tasks can be completed safely and 

effectively by the DRL-based overtaking policy.  Additionally, we put the learnt decision policy 

to the test on an actual in normal highway traffic; an autonomous car will execute overtaking 

decisions and control. 

Keywords: Artificial Intelligence (AI), Deep Reinforcement Learning (DRL), SVM, Machine 

Learning (ML), Autonomous Car, Deep Learning (DL). 
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Introduction 

The car may do many driving tasks without a human driver thanks to Autonomous Driving 

(AD).  Autonomous or automated cars have emerged as a global research hotspot, driven by 

the immense potential of Artificial Intelligence (AI)[1]. Automobile manufacturers such as 

Audi , Tesla, Ford, Mercedes-Benz ,Waymo , General Motors, Toyota, and others are 

producing great strides in creating their own autonomous cars.  Researchers in the automobile 

industry are working to develop the necessary technology to create fully automated cars in the 

interim.  With the advancement of technology and social and economic development, the 

number of cars on the road is growing rapidly[2]. 

Autonomous cars consist of four key modules: perception, control, planning, and decision-

making.  Based on the operations of numerous sensors, including radar, lidar, the Global 

Positioning System (GPS), and others, perception shows that autonomous cars are aware of the 

driving conditions.  The decision-making controller controls the cars' lane-changing, lane-keep, 

braking, acceleration, and other driving actions. The planning feature aids automated cars in 

determining the most efficient routes between two points.  In order to complete driving 

techniques and follow the planned course, finally, an onboard powertrain components would 

get instructions from the control module to perform precisely.  There are six levels in the AD, 

ranging from L0 to L5, based on the intelligent degrees of the aforementioned modules[3]. 

Autonomous cars rely heavily on decision-making strategies, which are thought of as the 

human brain.  Manual guidelines either by imitating supervised learning methods or by drawing 

on human driving experiences are frequently used to construct this policy, determined the 

motion purpose of the nearby autos using the continuous hidden Markov chain [4]. The policy 

for multi-criteria decision-making that is being provided aids city automobiles in making 

practical decisions under various circumstances.  The associated model combines the candidate 

decision generating module with cooperative car-following models.  Additionally, the idea of 

a human-like driving mechanism was brought up.  By taking into account the demand for 

human drivers, it could modify the driving decisions[5]. 

Artificial Intelligence (AI) technologies like deep learning, computer vision, and machine 

learning enable these advancements, which enable automobiles to learn from their 

environment, identify impediments, and make wise driving judgments.  The automotive sensor 

sector now offers new opportunities to enter the business because to advancements in machine 

learning. A popular machine learning technique with good generalization capabilities is the 

Support Vector Machine (SVM)[6]. It can map variables into feature spaces that have more 

dimensions or are infinite using nonlinear methods for either classification (Support Vector 

Machine (SVM) classification) or regression (Support Vector Machine Regression (SVR)).  

However, SVR uses the same approach as SVM in the classification problem and is able to 

predict the value of an endless number of possible outputs.  Furthermore, SVR is configured 

with a tolerance margin to approach the most accurate categorization outcomes.  SVM is more 

flexible in addressing the multi-classification problem than SVM, despite its greater 

complexity[7].  In this paper, the output threshold range is established for each driving decision, 
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and the SVM algorithm is utilized to forecast the multi-driving decision.  The main applications 

of SVM in driving decision research include driving risk assessment.  Currently, the majority 

of research uses SVM to address problems by directly defining the kernel functions, but 

occasionally it may be discovered that the kernel function does not correspond to the situation 

at hand. Thus, to optimize the SVM model, a novel kernel function is proposed to let the 

objective problem automatically select the ideal kernel function.  Because they can identify and 

categorize objects by examining distinct spectral fingerprints, Support Vector Machines 

(SVMs) are very useful in this situation[8].  Even in noisy or congested situations, SVMs 

enhance target recognition and classification by projecting data into higher-dimensional areas.  

They have proven effective in both academic and industrial settings, with applications ranging 

from object recognition to handwritten digit recognition.  This section examines recent 

developments in machine learning's application to driverless cars[9]. 

Recently, support vector machines have gained attention as a potentially helpful tool in the hunt 

for stronger decision-making processes.  A complex machine learning technique that performs 

exceptionally well in classification tasks is the Support Vector Machine (SVM).  It 

accomplishes this by finding the optimal hyperplane that has the largest margin between data 

points of different classes.  SVM has several advantages in the context of autonomous cars, 

making it a perfect choice for enhancing highway safety and efficiency[10]. 

Techniques for Deep Reinforcement Learning (DRL) are regarded as an effective means of 

addressing lengthy sequential decision-making difficulties.  Many initiatives have been made 

in recent years to investigate topics related to DRL-based autonomous driving. Constructed a 

hierarchical framework to use the Reinforcement Learning (RL) technique to understand the 

policy for making decisions.  The advantage of this study is not dependent on the labeled 

driving data from the past.  DRL techniques were used in address the path-following and 

collision avoidance issues for automated car[11]s.  In these two studies, the relevant control 

performance outperforms the traditional RL approaches. Additionally, took into account both 

path planning and the amount of fuel used by autonomous cars.  It has been demonstrated that 

the associated algorithm, DRL, can successfully complete these two-driving tasks.  Han et al. 

used the DRL method, which considers the information of neighboring automobiles as network 

feedback knowledge, to determine whether to change lanes or maintain lanes for networked 

autonomous cars .  The resulting policy can improve driving comfort and traffic flow[12].  

In this study, a policy permitting autonomous cars to overtake on highways is built using the 

suggested approach.  First, an ego car seeks to navigate a certain driving scenario effectively 

and safely in the highway-based driving environment under study.  The ego's and the 

surrounding automobiles' longitudinal and lateral motions are then controlled through a 

framework of hierarchical control.  In addition, the suggested algorithms are developed and 

useful to determine the decision-making process for the roads approach.  A performance of the 

suggested control system is finally examined through the execution of several simulation tests. 

According to simulation data, an overtaking policy could safely and effectively complete 

highway driving tasks. 
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The following describes how this article is organized: Sections 2 and 3 explain related works, 

the highway driving environment, and the ego and neighboring automobiles' control modules. 

Section 4 provides definitions for the SVM and DRL algorithms. The pertinent outcomes of a 

number of simulation tests are displayed in Section 5. Lastly, Section 6 conducts the 

conclusion. 

 

1. Related works 

The foundation of contemporary autonomous driving systems is Artificial Intelligence (AI), 

with a variety of technologies like machine learning, deep learning, and computer vision 

allowing cars to sense and engage with their surroundings.  In order to enable autonomous 

systems to make judgments in real time, machine learning algorithms are mostly employed to 

teach them to identify patterns in enormous volumes of data.  Object identification and 

classification tasks—which are essential for recognizing pedestrians, other cars, and road 

signs—have advanced thanks in large part to deep learning, a branch of machine learning. 

The most popular type of AC testing is called "Shadow Driving," in which a driver is prepared 

to stop an accident before it happens or take over if the AC decides to disengage.  This approach 

is demonstrated to require a minimum of 275 million miles to ensure that ACs will be at least 

as safe as humans.  If there were to be any updates to the AC being tested, some, if not all, of 

those miles would also need to be redone.  Test tracks are also frequently used for real-world 

testing because they enable businesses to test particular, occasionally extreme scenarios[13].  

The study emphasized the importance of applying AI-based techniques to enhance lane change 

maneuvers performed by driverless cars. Their model mimicked real-world traffic conditions 

and scenarios by using Convolutional Neural Networks and Long Short-Term Memory 

networks (LSTMs) to make sequential judgments depending on input. According to simulation 

studies, the agent might pick up the best lane change rules, which would enable it to make better 

decisions and be more adaptable as traffic conditions change[14]. 

The development of a hybrid decision-making model that blends machine learning and rule-

based reasoning was a major advancement. To assess if changing lanes was safe given the speed 

and distance to oncoming traffic, they employed fuzzy logic and support vector machines. The 

hybrid approach demonstrated improved lane change decision accuracy in a variety of traffic 

scenarios, underscoring the potential synergy between rule-based systems and artificial 

intelligence. The program was trained and its outcomes verified by the researchers using a big 

dataset of actual driving scenarios[15]. 

Convolutional Neural Networks are capable of efficiently extracting local and global 

characteristics derived from data, including text and images. The developed a CNN prediction 

model that had an absence trigger rate of 0.037% and an average To predict where a car turning 

left will be at an intersection when making a turn accurateness of 84.96%, allowing them to 

accurately predict the intentions of bicycles and pedestrians. In order to forecast the position of 

a left-turning car at an intersection during a turn created a Conv-LSTM model that uses CNNs 

to extract behavioral data at various periods[16]. 
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According to[17] , while the deployment of autonomous Cars (ACs) offers many benefits, like 

increased safety and a smaller environmental effect, there are also serious hazards associated 

with security and privacy flaws. By utilizing their individual advantages to strengthen antivirus 

software against malevolent attacks, blockchain and artificial intelligence integration provide 

a viable way to allay these worries. According to the report's thorough examination of security 

threats, current research, and potential avenues for future study, even if prior research examines 

this junction, more study is necessary to completely understand the potential of this 

amalgamation in preserving ACs.  

 

2. The Control Module and Driving Environment 

This section introduces the highway driving situation under study. A three-lane freeway setting 

is created without sacrificing generality. Additionally, a controller for motion that is 

hierarchical is explained for controlling the ego's and the surrounding automobiles' longitudinal 

and lateral movements. The upper-level models include reduce total braking caused by lane 

changes and the intelligent driver model [17]. A car's velocity and acceleration are managed by 

the bottom level. 

 

3.1 Highway Driving Scenario 

In autonomous driving, decision-making refers to choosing a series of rational driving actions 

to accomplish certain driving tasks.  These actions include lane-changing, lane-keeping, 

braking, and accelerating on highways.  Avoiding crashes, running quickly, and staying in the 

desired lane are the primary goals.  Overtaking is a common driving action that involves 

accelerating and passing other cars[18]. 

Fig. 1 depicts the driving scenario for the research, and decision-making problem for 

autonomous cars on the highway is covered in this work.  Other green automobiles are referred 

to as surrounding cars, whereas the orange car is the ego car.  The driving environment has 

three lanes, and the decision-making policy that is produced in this study can be readily applied 

to other scenarios.  The ego car would start out at a random speed in the middle lane. 

The ego car's goal is to run as fast as it can without colliding with any nearby cars. This 

objective is therefore understood to be efficiency and safety. The neighboring cars' starting 

positions and speeds are created at random. It suggests that there are unknowns regarding the 

actual driving situation. Additionally, the ego car can pass other cars from the right or left and 

likes to stay in lane 1 (L=1) in order to mimic the actual situations. 

All of the nearby cars were in front of the ego car when this driving responsibility first began. 

A quantity of close automobiles in each lane shows that there are cars in the vicinity. The ego 

car would be interrupted by either hitting other cars or running out of time. In this work, the 

process of running from the beginning to the end is referred to as an episode. 

The following parameters are established for the driving situation without compromising 

generality: The ego car's width and length are such that its top speed is 40 m/s and its starting 

speed is set at m/s. 20 Hz is the simulation frequency, and each episode lasts 100 seconds. IDM 
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and MOBIL control the surrounding cars' behaviors by randomly selecting their initial velocity 

from m/s[19].  

 

 
Figure 1: Driving on a highway in a situation where decision-making is difficult[20] 

 

3.2 Car Behavior Controller 

Fig.2 illustrates how a hierarchical control system masters the motions of every car in roadway 

situations. The upper-level employs Intelligent Driver Model (IDM) and MOBIL to regulate 

the automobile's behaviors, while the lower-level aims to let the ego car follow a target lane 

and track a predetermined target speed. The reference model suggests that it controls the ego 

vehicle, and the DRL is used in this work to control the ego automobile. It also acts as a standard 

for assessing the DRL-based decision-making process[21].  

Intelligent Driver Model (IDM) is a popular microscopic model at the top level for achieving 

car-following and collision-free. IDM often determines the longitudinal behavior in automated 

automobiles' adaptive cruise controllers. Generally speaking, IDM is calculated as the 

longitudinal acceleration. 

 

 
Figure 2: The ego car and its surrounding cars are controlled hierarchically[22]. 
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3.3 Car Motion Controller 

The longitudinal and lateral movements of the autos are regulated at the lower level. In the 

former, a proportional controller controls the acceleration as follows:  

 

𝛼 = Kp(𝜈 tar − 𝜈)             (1) 

 

Where the proportional gain is denoted by Kp. 

 To manage the car's location and lateral direction, the controller employs a simple 

proportional-derivative operation. The location shows how the car's lateral speed 𝜈 lat is 

calculated. 

 

𝜈 lat = −Kp,latΔlat                      (2) 

 

Where Δlat is the car's lateral position with respect to the lane's center line and Kp,lati is the 

position gain. The heading control and the yaw rate commandφ are then connected as follows:  

 

φ˙ = Kp,φ(φtar − φ)            (3) 

 

where Kp,lat is the heading gain and φtar is the goal heading angle to follow the desired lane. 

 

Therefore, bi-level control architecture in Fig. 2 the responsible for the motions of the 

surrounding autos. It is presumed that the ego car is aware of these cars' position, speed, and 

acceleration. This restriction encourages the ego car to use trial-and-error to learn how to drive 

in the given situation. To achieve this educational process and determine the policy for making 

decisions about roads, the DRL approach is presented and established in the next section. 

 

4 Methodology 

The current study uses (SVM-DRL) approaches to help with highway environment decision-

making, as seen in Fig.3. 

 

 4.1 Data Collection 

The Federal Highway Administration (FHWA) gathered the NGSIM dataset; it is commonly 

recognized as one of the most comprehensive and precise field datasets for the study and 

advancement of traffic micro-simulation. It uses trajectory data from digital cameras taken at 

tenths of second intervals to provide precise vehicle locations along 0.5- to 1.0-kilometer road 

segments. The I-80 in the San Francisco Bay Area and the US 101 in Los Angeles are two 

notable instances of actual road data in this dataset.  These datasets, which include wide-area 

detector data, vehicle trajectory data, and other auxiliary data, are very helpful for studying 

driver behavior[21]. 
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Figure 3: proposed method 

 

4.2 Support Vector Machine 

Support vector machines are a type of machine learning that is based on statistical learning 

theory, which was. Among its qualities are exceptional model generalization performance and a 

strong learning capacity for small data. Time series prediction, function approximation, and 

classification have all benefited from the effective use of SVM, which has made significant 

strides in theoretical study and algorithm implementation in recent years.  

SVM was initially applied to linear discrete data to address the binary classification 

problem[23]. The fundamental idea is to determine the best hyperplane that meets the criteria 

for data classification and to maximize the difference between two sample points while 

preserving the precision of the categorization, as seen in Figure 4. 

 

 
Figure 4: optimum hyperplane concept[24]. 

 

If linear classification is used, let's say the training sample  

is 𝑆𝑉={(𝑥1,𝑦1),(𝑥2,𝑦2),…,(𝑥𝑚,𝑦𝑚)}SV={(x1,y1),(x2,y2),…,(xm,ym)}, 𝑥∈𝑅𝑑x∈Rd, 𝑦𝑘∈{−1

,1}yk∈{−1,1}, the input variable is 𝑥𝑘, 𝑦𝑘 represents the severity of collision injuries, and the 

quantity of training samples is represented by 𝑚, and the d-dimensional real number space is 

represented by k=1,2,…,m. 
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According to SVM linear classification, a hyperplane 𝞈 •𝑥+𝑏=0, where 𝑏 is the bias and 𝞈 is 

an adjustable weight vector, can accurately classify all samples.   

 (𝞈·𝑥𝑘+𝑏)≥1,=1,2,…,𝑚     (4) 

Determine the classification interval by calculating: 

{𝑥𝑘|𝑦𝑘=1}𝞈·𝑥𝑘+𝑏/ ‖𝞈‖  −𝑚𝑎𝑥{𝑥𝑘|𝑦𝑘=−1}𝞈·𝑥𝑘+𝑏/‖𝞈‖= 2/‖𝞈‖   (5) 

Maximizing the classification interval, or minimizing the ‖ 𝞈 ‖, is necessary for the optimal 

hyperplane. Consequently, a minimum function that complies with the following restriction can 

be used to represent the optimal hyperplane problem:  

(𝞈)=1/2‖𝞈‖2=1/2(𝞈·𝞈)      (6) 

Three kinds of frequently utilized kernel functions are as follows: 

(1) A polynomial kernel function 

(2) Function of the radial basis kernel  

(3) The sigmoid kernel function  

This research develops a three-classification collision injury severity prediction model (non-

fatal, non-incapacitating, and without injury).   It is necessary to extend the SVM model in order 

to construct multiple SVM classifiers, as the basic SVM model mentioned above only takes into 

account the binary classification problem[25].  Fig. 5 illustrates how the three crash injury 

severity categories are categorized in the training into three binary combos: Non-incapacitating 

and non-fatal, non-incapacitating and non-incapacitating, and non-incapacitating and non-fatal.  

Three SVM training models for the binary class are produced following training.  Each sample 

in the test is classified using these three SVM training models, and then when training is 

completed, three binary-class SVM training models are generated.  A sample category is 

determined by using three models for SVM training to categorize each taster during testing is 

chosen based on The classification result category with the most results [23]. 

 
Figure 5: Building SVM with several classifiers[26]. 

To give autonomous cars a similar foundation in emergency scenarios, crash damage severity 

prediction models that correlate to various options (braking, turning, and braking + turning) 

must be developed. This is because autonomous cars try to forecast the severity of collisions in 

order to make emergency judgments with the fewest possible injuries.  
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4.3 Deep Reinforcement Learning Methodology 

The DRL algorithms are introduced in this section.  First, the relationship between the agent 

and the environment in DRL is described.  Machine learning is one area of artificial intelligence 

disturbed with using data to improve the efficiency of computer algorithms. The three primary 

subcategories of machine learning are reinforcement learning (RL), supervised learning, and 

unsupervised learning.  In reinforcement learning, an autonomous agent seeks to maximize a 

predefined reward function in order to learn how to carry out tasks within an environment.  

When the agent interacts with its surroundings and does the right thing, it is rewarded.  

Conversely, the agent is punished with harmful incentives or penalties if the action they choose 

is unpleasant[27]. 

The goal of unsupervised learning, however, is to uncover hidden patterns in unlabeled data.  

Although it may be beneficial to find such structures, this method is unable to maximize 

rewards, which is one of Reinforcement Learning's (RL) main objectives. 

The Reinforcement Learning is used to solve situations where there are a lot of different actions 

and states in the environment.  Artificial Neural Networks (ANN) and other function 

approximates can be used to address the difficulties presented by huge state and action spaces.  

Deep reinforcement learning is the term used to describe the application of a neural network in 

Reinforcement Learning (RL) as a function approximator. 

RL problems are usually structured using Markov Decision Processes (MDPs), which include 

a reward function (R), a transition function (T) between states, a collection of acts and states, 

the tuple (S, A, T, R) is frequently used.  T(st, at, st+1) is the probability of changing to a new 

state s + 1 from statuses at time stage t following action a. This probability varies from 0 to 1.  

R (st, at, st+1) and rt are immediate rewards from this transition, respectively.  An illustration of 

the basic elements of the autonomous car RL model is shown in Fig. 6. 

 
Figure 6: DRL model for self-driving cars[28] 

  

Following time step t, the expected discounted return Rt is defined as follows: 

 

𝑅𝑡=∑t
∞𝛾𝑡.𝑟𝑡         (7) 
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Where γ is a discount factor that falls between 0 and 1. The range of the discount factor γ is 0 

to 1. The value of T may be unlimited (∞) or finite, contingent on the particular issue. A policy 

π (a|s) is the attribution of action probabilities to states. The expected return from state (s) under 

policy π is represented by the value function vπ (s), which is expressed as follows: 

 

(𝑠𝑡)=[𝑅𝑡|𝑆𝑡,𝜋]   (8) 

 

 The following is the exploit–value Q (s, a) function: 

 

(𝑠𝑡,𝑎𝑡)=[𝑅𝑡|𝑆𝑡,𝑎𝑡,𝜋]     (9) 

 

This includes the Bellman equation in an iterative fashion: 

 

(𝑠𝑡,𝑎𝑡)=[𝑟𝑡+𝛾 𝑚𝑎𝑥𝑄𝜋(𝑠𝑡+1,𝑎𝑡+1)]     (10) 

 

However, not all reinforcement learning issues may be represented as Markov decision 

processes (MDPs). It is possible that the states may not be completely or else immediately 

discernible from the environment. In these circumstances, difficulties may stay expressed using 

Partially Observable Markov decision processes (POMDPs). Treating these challenges as 

MDPs is one way to deal with them, which entails using prior knowledge and combining it 

with current observations[25]. For example, four successive images in Atari Games can be used 

to make observations[29] . Reinforcement learning's primary goal is to identify a strategy that 

optimizes predicted returns.  Its two main components are learning a policy through a policy 

network and learning a Q function through a critic network.   The Q learning part of the method 

seeks to minimize Equation (5) in order to roughly represent the ideal Q function Q∗(s, a), as 

shown by Equation (4).  With tuples (s, a, r, s', a') made up of parameters φ and aggregated 

experiences d and a critic network Q(s, a), the Mean Squared Bellman Error (MSBE) can be 

stated as follows:  

(∅,𝜃)=[(𝑄∅(𝑠,𝑎)−(𝑟+𝛾 (1−𝑑)𝑚𝑎𝑥𝑄∅(𝑠́ ,𝑎 ́ )))] 2     (11) 

 

To choose actions that maximize Q∗(s, a), Learning the deterministic policy uϕ (s) is the goal 

of the policy network.  Gradient ascent can be used to accomplish this.  Nonetheless, the DDPG 

method makes use of target networks and a replay buffer to preserve stability throughout the 

learning process.  These target networks are made up of a policy target network and a target 

critic network.  The constraints ϕ lag behind the originals, even if the architecture of both 

networks is identical[30].   

 

5.  Results and Discussion  

This section compares and assesses the suggested highway decision-making policy strategy 

with another approach in order to determine its efficacy; once the simulation results show that 
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the optimal option policy, we look at collected rewards to show how the suggested algorithms 

can learn. High-level decision-making using AI-based techniques is comparatively successful. 

However, some upcoming research and development challenges that are currently anecdotal 

remain significant opportunities for the future and merit cautious consideration. We suggest 

that the following topics be discussed openly: Adaptability, or the capacity to make pertinent 

decisions and actions in unsuitable settings; (ii) ethics (human and legal aspects of the 

decision); (iv) context, or the relaxation of rules; (v) the multimodal transport service; and (iii) 

adequate perception and control stages (data quality, reliability, and robustness) are all 

necessary for making relevant decisions. 

The two layers' algorithms are first taught offline before being implemented in real-time 

settings.  Based on the computation performance studies, our suggested method has the 

potential to implement motion planning and real-time decision-making.  The training data 

samples are gathered utilizing high-fidelity consistency and dynamics in both levels are 

guaranteed to bridge the gap between the simulated and actual surroundings. In conclusion, our 

algorithm can handle motion planning and decision-making issues in real-world settings. 

The control function of the SVM-DRL algorithms suggested for an agent's decision-making 

process is evaluated in a highway traffic setting. The simulation findings demonstrate that the 

decision policy is ideal after we first compare and validate its efficacy with another evaluation 

approach.  Second, we analyze the accumulated rewards to show that the suggested algorithm 

can learn.  

We used the kernel function in the SVM models with the 25% test samples.  Prediction accuracy 

is calculated as the ratio of the samples' accurate classification number. To establish a baseline 

for performance assessment, the DRL algorithm was evaluated in the same setting as the 

suggested RL techniques. Because of their dependability and computational efficiency, rule-

based techniques like DRL are frequently used even if they are not flexible enough to handle 

dynamic and complex driving conditions. DRL is therefore a reliable point of reference. As 

seen in Table 1, the DRL findings are first contrasted with those of the base SVM approach. 

 

Table 1: A comparison between DRL and SVM 

Methods Accuracy 

Training 

set  

Testing 

set  

True 

positive 

False 

negative  

SVM 90.64% 88.75% 88.75% 88.75% 

DRL 97.16% 96.03% 96.03% 96.03% 

 

The findings show that DRL performs noticeably better than SVM in terms of preventing 

collisions, lowering the average number of collisions. Additional tests were carried out to assess 

the performance of DRL variations after the initial comparison between SVM and DRL. 

Since the approaches were convergent between 12,000 and 14,000 episodes, 20,000 episodes 

were initially selected. However, following hyperparameter adjustments, the methods 
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converged around 7,000 episodes. Each approach has a different training time. Base DRL 

training took 10 hours, Noisy DRL and Double DRL took 11 hours, Duelling DRL took 16 

hours, and Average DRL took 19 hours. 

 Although Average DRL has a greater loss value than the alternative techniques, it has the 

smoothest curve in the loss graph of methods shown in Fig. 7, and it is the most stable. In 

contrast, Noisy DRL has more fluctuations than other approaches and the lowest loss value.  

This notable enhancement indicates the efficacy of our methodology and implies that it presents 

a more promising option for practical uses like driving on highways. 

 
Figure 7: The training loss graph. 

 

Fig. 8 displays a comparison of the DRL and SVM algorithms' respective performances. Note 

that we set the mempool size or the maximum number of transactions in the mempool, to 10 in 

order to decrease the state space and allow the DRL algorithm to function in our compute 

environment. The DRL method is shown to converge to the reward. 

 
Figure 8: Comparison of DRL and SVM performance 
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6. Conclusion  

Artificial intelligence techniques are marketed as very effective and promising options in the 

realm of autonomous car development. Autonomous cars have established themselves as key 

players in the broad implementation of smart city infrastructures. The degree of human 

confidence and dependability that people place in a car is largely determined by its capacity to 

communicate decision-making procedures and assist passengers in understanding why the car 

behaved in a particular way.  The two most important elements in lowering passengers' stress 

and anxiety levels are visual explanations and the guarantee of security. This initiative attempts 

to bring together the domains of explainable AI and autonomous car systems' decision-making 

processes to offer lucid insights into the part explain ability plays in boosting human confidence 

in AI solutions. In this study, the AL approaches are used to discuss the roadway decision-

making problem.  The SVM and DRL algorithms are applied in the intended driving scenarios 

to provide a safe and effective control framework.  The optimality, convergence rate, and 

adaptability are shown based on a number of simulation tests. Furthermore, the testing findings 

are examined, and the provided method's potential for use in practical settings is demonstrated.  

In the future, Hardware-In-Loop (HIL) studies will be used to apply roadway decision-making 

online.  It is also possible to predict the associated overtaking strategy using the real-world 

highway database that has been obtained. 
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