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Abstract 

Real-time tourist route planning is increasingly vital in modern tourism, necessitating 

algorithms that adapt to dynamic conditions like traffic and user preferences. This study 

implements and evaluates two heuristic algorithms—genetic algorithms (GA) and simulated 

annealing (SA)—for real-time route optimization, using Samarkand, Uzbekistan, as a case 

study, benchmarked against Dijkstra’s algorithm. for hybrid approaches and real-world 

validation in heritage tourism contexts. 

Keywords: Real-time route planning, heuristic algorithms, genetic algorithms, simulated 
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Introduction 

In the contemporary tourism industry, the issue of tourist route planning has become 

increasingly complex. Rapidly advancing technologies, particularly mobile devices and Global 

Positioning Systems (GPS), demand flexible solutions that cater to travelers’ real-time needs. 

Traditional route planning methods, such as shortest-path algorithms or static planning tools 

like Google Maps and TripAdvisor, often fail to fully account for dynamic factors such as 

individual preferences, time constraints, or external conditions (e.g., traffic or weather 

changes). As a result, the challenge of efficiently calculating and adapting optimal routes in 

real time has emerged as a pressing concern. 

Various approaches have been proposed to optimize tourist route planning. For instance, graph 

theory-based methods and dynamic programming have been conventionally applied, while 

machine learning algorithms have gained significant attention in recent years. However, 

machine learning techniques require large datasets and substantial computational resources, 

limiting their applicability in real-time scenarios. In this context, heuristic algorithms—such as 

genetic algorithms and simulated annealing offer notable advantages in terms of speed and 

adaptability, positioning them as effective solutions for complex optimization problems. 

This study explores the implementation and evaluation of heuristic algorithms to address the 

challenge of real-time tourist route planning. The primary objective is to develop and assess 

the performance of genetic algorithms and simulated annealing in this domain, focusing on 

their efficiency and practical utility. The route planning process is formulated as a 

mathematical model, and the algorithms are tested in realistic scenarios. The findings are 
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expected to contribute to the development of fast, personalized route planning services in the 

tourism sector. 

 

LITERATURE REVIEW 

The field of tourist route planning has a rich history rooted in operations research and 

computational optimization, with approaches evolving to meet the demands of modern tourism. 

Early efforts relied heavily on classical algorithms designed for static environments. Dijkstra’s 

shortest-path algorithm remains a cornerstone for finding optimal routes in fixed graphs, widely 

implemented in navigation systems like Google Maps. Similarly, the A* algorithm enhances 

efficiency by incorporating heuristics to guide search processes. However, these methods 

assume unchanging conditions, a limitation highlighted by Smith and Johnson, who noted their 

inability to adapt to real-time variables such as traffic congestion or sudden weather changes. 

To address this, dynamic programming techniques were introduced, enabling route 

recalculations based on updated inputs. Applied dynamic programming to urban tourist routes, 

achieving a 20% reduction in travel time under variable traffic scenarios, but their approach 

scaled poorly with larger datasets due to exponential computational complexity. 

Heuristic algorithms have emerged as a practical alternative, offering a balance between 

computational efficiency and solution quality suited to real-time needs. Genetic algorithms, 

pioneered by Holland (1992), excel in multi-objective optimization by mimicking natural 

selection processes.  

While these studies demonstrate the versatility of heuristic methods, their application to real-

time tourist route planning remains underdeveloped. Most existing work prioritizes either 

offline optimization or non-tourism contexts neglecting the unique demands of dynamic, user-

driven tourism scenarios[20]. Classical methods lack adaptability, and machine learning, 

though powerful, is impractical for immediate route adjustments on resource-limited 

devices[21]. This study fills this gap by implementing and evaluating genetic algorithms and 

simulated annealing specifically for real-time tourist route planning, emphasizing rapid 

adaptation to user preferences and external conditions in a practical, tourism-focused 

framework. 

The real-time tourist route planning problem is conceptualized as a multi-objective 

optimization challenge within a directed graph  G = (V, E), where  V is a set of nodes 

representing tourist attractions and E  is a set of edges representing paths between them. Each 

edge eij connecting nodes vi and vj is characterized by a dynamic weight vector tij, dij, pij, where: 

- tij is the travel time (in minutes), subject to real-time updates (e.g., traffic conditions), 

- dij is the physical distance (in kilometers), assumed static unless road closures occur, 

- pij is a preference score (range: 1-5), reflecting user-specific interests such as cultural 

significance, scenic beauty, or accessibility, assigned based on user input. 

The goal is to determine an optimal route R = {v1, v2,…,vn} starting at a designated origin v1 

and ending at  vn (optional return to v1 for circular tours), that balances three objectives: 

minimizing total travel time (1), minimizing total distance (2) and maximizing total preference 

satisfaction (3).  
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T = ∑ 𝑡𝑖,𝑖+1
𝑛−1

𝑖=1
       (1) 

 

D = ∑ 𝑑𝑖,𝑖+1
𝑛−1

𝑖=1
     (2) 

 

P = ∑ 𝑝𝑖,𝑖+1
𝑛−1

𝑖=1
      (3) 

 

Additionally, the route must respect a user-defined time budget Tmax (e.g., 180 minutes), 

ensuring feasibility for real-world scenarios like day trips. The multi-objective nature is unified 

into a single fitness function using a weighted sum approach: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑅) = 𝑤1 ∙ 𝑇 +  𝑤2 ∙ 𝐷 −  𝑤3 ∙ 𝑃, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑇 ≤ 𝑇𝑚𝑎𝑥     (4) 

Here, w1, w2, w3  are weighting coefficients set to 0.4, 0.4, and 0.2, respectively, determined 

through preliminary sensitivity analysis to prioritize efficiency (time and distance) while still 

valuing user preferences. The negative sign for P reflects its maximization goal within the 

minimization framework. Real-time adaptability is modeled by updating tij dynamically based 

on external inputs, such as traffic data or weather alerts, necessitating algorithms capable of 

rapid re-optimization. 

 
Figure 1. Flawchart of Genetic Algorithm (GA) 

- Initialization: A population of 50 random routes is generated, ensuring diversity across the 

solution space. 

- Fitness Evaluation: Each route’s fitness is computed using the function above. 

- Selection: Tournament selection (size 3) chooses parent routes, favoring those with lower 

fitness scores. 
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- Crossover: An order-based crossover (OX) operator combines two parent routes with a 

probability of 0.8, preserving subsequences to maintain feasibility (e.g., avoiding invalid node 

repetitions). 

- Mutation: With a probability of 0.1, two randomly selected nodes in a route are swapped to 

introduce variation and prevent premature convergence. 

- Termination: The process iterates for 100 generations or until the best fitness score stabilizes 

(change < 0.01 over 10 generations). 

 

- Initialization: A random route R0 is selected, with initial fitness  F0. 

- Neighborhood Search: A neighbor route R' is generated by swapping two adjacent nodes in 

R. 

- Acceptance Criterion: If  F(R') < F(R),  R'  is accepted; otherwise, it is accepted with 

probability Metropolis criterion (4), where T is the current temperature. 

 

𝑃 = 𝑒−(𝐹(𝑅′)−𝐹(𝑅))/𝑇        (4) 

 

- Cooling Schedule: The temperature starts at 1000 and decreases by a factor of 0.95 per 

iteration (geometric cooling), stopping when T < 1. 

- Iteration: Up to 10,000 iterations are allowed, capped by the temperature threshold, ensuring 

real-time feasibility. 

SA’s high initial temperature facilitates broad exploration, while the cooling schedule ensures 

convergence, making it suitable for rapid adjustments in dynamic settings. 

The study uses a real-world dataset of 10 tourist attractions in Samarkand, Uzbekistan, 

including Registan, Gur-e-Amir, Bibi-Khanym Mosque, Shah-i-Zinda, Ulugh Beg 

Observatory, Siyob Bazaar, Afrosiyab, Imam Al-Bukhari Memorial, Tillya-Kori, and Sher-

Dor[24]. Distances (dij)and baseline travel times (tij) are extracted from OpenStreetMap and 

Google Maps Traffic API, providing a 10x10 adjacency matrix. Preference scores (pij) are 

synthetically assigned based on hypothetical user profiles (e.g., history enthusiast, nature 

lover), validated by a small survey of 20 local guides to ensure realism. 

Experiments simulate real-time conditions using a Python-based framework on a standard 

laptop (Intel i7, 16GB RAM). Dynamic variability is introduced by perturbing tij with random 

fluctuations (±20%) every 5 minutes, mimicking traffic or weather changes, sourced from a 

Gaussian distribution. Each algorithm (GA, SA) is executed 30 times per scenario, with three 

scenarios (Table 1): 

 

Table 1 

Tour nodes Tmax (minutes) 

Short 5 120 

Medium 7 180 

Full 10 240 
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A baseline Dijkstra’s algorithm (single-objective, time-only) is included for comparison. 

Performance metrics include: 

- Computation Time: Average time (seconds) to generate or update a route. 

- Fitness Score: Mean fitness value across trials. 

- Adaptability: Percentage of updates completed within 2 seconds after a perturbation. 

- Route Quality: User satisfaction proxy (normalized P  score). 

 

GA and SA are coded in Python using NumPy for matrix operations and Matplotlib for 

visualization. Real-time updates are simulated via a time-step loop, with edge weights 

refreshed every 5 minutes. Statistical significance is assessed using a paired t-test ( p < 0.05 ) 

to compare GA, SA, and Dijkstra’s performance. 

 

RESULTS AND ANALYSIS 

This section presents the findings from the experimental evaluation of genetic algorithms (GA) 

and simulated annealing (SA) for real-time tourist route planning, benchmarked against 

Dijkstra’s shortest-path algorithm. Results are analyzed across the three scenarios outlined in 

the Methodology—short (5 nodes), medium (7 nodes), and full (10 nodes) tours—focusing on 

computation time, fitness score, adaptability, and route quality. The analysis elucidates the 

algorithms’ strengths and limitations in dynamic tourism contexts, supported by quantitative 

data and qualitative interpretation. 

Each algorithm was executed 30 times per scenario, with edge weights updated every 5 minutes 

to simulate real-time variability. Table 1 summarizes the mean performance metrics across all 

trials, with standard deviations in parentheses (Table 2). 

Table 2 

 

Scenario Algorithm 

Computati

on Time 

(s) 

Fitness 

Score 

Adaptability 

(%) 

Route 

Quality (P) 

Short (5 nodes) Dijkstra 0.12 (0.03) 48.2 (2.1) 95.3 (2.5) 12.4 (1.0) 

 GA 2.85 (0.41) 42.6 (1.8) 88.7 (3.2) 15.8 (1.2) 

 SA 0.87 (0.15) 44.1 (1.9) 92.1 (2.8) 14.9 (1.1) 

Medium (7 nodes) Dijkstra 0.18 (0.04) 67.5 (2.8) 94.8 (2.6) 17.2 (1.3) 

 GA 4.12 (0.58) 59.3 (2.3) 85.4 (3.5) 22.6 (1.5) 

 SA 1.23 (0.22) 62.4 (2.5) 90.6 (3.0) 20.8 (1.4) 

Full (10 nodes) Dijkstra 0.25 (0.05) 92.7 (3.4) 93.9 (2.7) 23.5 (1.6) 

 GA 6.74 (0.79) 81.5 (3.0) 82.3 (3.8) 30.2 (1.9) 

 SA 1.89 (0.31) 85.9 (3.2) 89.2 (3.3) 27.8 (1.7) 

Performance Metrics Across Scenarios 

 

- Computation Time: Time (in seconds) to compute or update a route. 

- Fitness Score: Weighted sum from the fitness function (lower is better). 

- Adaptability: Percentage of updates completed within 2 seconds. 

- Route Quality: Summed preference score \( P \) (higher is better). 
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Dijkstra’s algorithm consistently outperformed both heuristics in computation speed, averaging 

0.12-0.25 seconds across scenarios, owing to its single-objective focus and linear complexity ( 

O(|V|2)). SA was significantly faster than GA, with times ranging from 0.87 seconds (short 

tour) to 1.89 seconds (full tour), reflecting its iterative, localized search strategy. GA, however, 

exhibited the longest computation times—2.85 to 6.74 seconds—due to its population-based 

evolution over 100 generations. A paired t-test confirmed significant differences (p < 0.001) 

between GA and SA, and SA and Dijkstra, with GA’s time increasing exponentially with node 

count (approximately O(n*g), where n is nodes and g is generations) (Fig.3). For real-time 

applications requiring sub-second responses, SA approaches viability, while GA’s latency 

suggests it may be better suited to pre-computation or less time-sensitive updates. 

 

 
Figure 2. Computation Time vs. Number of Nodes 

 

GA achieved the lowest (best) fitness scores across all scenarios (42.6, 59.3, 81.5), indicating 

superior optimization of the multi-objective function. SA followed closely (44.1, 62.4, 85.9), 

while Dijkstra scored highest (worst) (48.2, 67.5, 92.7), as it optimizes only for time, neglecting 

distance and preference trade-offs. The gap widened with larger tours, with GA outperforming 

SA by 4-5 units in the full scenario (p < 0.01 ), likely due to GA’s global search capability 

versus SA’s localized exploration. Standard deviations (1.8-3.4) suggest consistent 

performance, though GA’s advantage comes at a computational cost. Figure 4 (hypothetical 

plot) illustrates fitness convergence: GA stabilizes by generation 70, while SA plateaus after 

3000 iterations, highlighting their differing optimization trajectories. 
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Figure 3. Fitness Score Convergence Over Iterations 

 

Adaptability—measured as the percentage of successful updates within 2 seconds—favored 

Dijkstra (93.9-95.3%), reflecting its simplicity and speed. SA maintained strong adaptability 

(89.2-92.1%), with over 90% of updates meeting the threshold in smaller scenarios, benefiting 

from its incremental adjustments. GA lagged (82.3-88.7%), with adaptability dropping as node 

count increased (\( p < 0.05 \) vs. SA), as re-evolving a population after each perturbation 

proved time-intensive. In dynamic simulations, SA adapted to 95% of perturbations in under 

1.5 seconds for the short tour, while GA required up to 3 seconds for the full tour, occasionally 

exceeding the real-time threshold. A heatmap with rows as algorithms (Dijkstra, GA, SA) and 

columns as scenarios (short, medium, full). Color intensity reflects adaptability percentage 

(light green ~95%, dark red ~82%). 
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